pecahanirrasional dan mutlak, dan penerapannya pada masalah nyata dari berbagai sumber belajar Sistem Persamaan Linear Tiga Variabel - Pengertian Sistem Persamaan Linear Tiga Variabel - Penerapan Sistem Persamaan Linear Tiga Variabel Mengidentifikasikuantitas-
Kita semua sepakat bahwa sistem merupakan suatu satu kesatuan atau kelompok dari suatu elemen atau unit yang saling berkaitan. Kira-kira dari judulnya mungkin sudah terlihat jelas apa yang akan menjadi pembahasan ini, elemennya merupakan persamaan linear. Dan ketiga persamaan ini saling penjelasan tadi, coba kalian ingat kembali, suatu representasi matematika disebut persamaan ketika ada tanda "". Yang artinya, ada kesamaan nilai antara dua ruas, yakni ruas kanan dan ruas kita masih membongkar maksud dari judul yang akan di bahas kali ini. Bahasa paling sederhana untuk mengatakan bahwa suatu persamaan itu linear yaitu, apabila dibuat grafiknya, maka bentuknya akan berupa garis kali ini kita akan bicara tentang sistem dari suatu persamaan linear yang memiliki tiga variabel, atau istilahnya dikenal sebagai sistem persamaan linear tiga variabel atau SPLTV. Dan sistem ini terdiri dari tiga elemen yaitu persamaan linear.Secara umum, representasi matematika dari sistem yang kita maksud tersebut yakni seperti berikutPada dasarnya, tugas kita kali ini yaitu mencari nilai , , dan , yang memenuhi ketiga persamaan di atas. Artinya ketika kita substitusikan , , dan , ketiga persamaan tersebut terpenuhi. Apabila hanya berlaku pada satu ada dua saja, maka pasangan , , dan bukanlah VariabelNah, untuk menentukan pasangan solusi tersebut, kita dapat menggunakan metode yang paling umum dan tergolong relatif mudah yaitu metode eliminasi. Seperti halnya kita lakukan ketika menyelesaikan sistem persamaan linear dua dibalik metode tersebut yaitu menyederhanakan tiga persamaan sebelumnya, sehingga kita mendapatkan suatu persamaan linear dengan variabel yang lebih teknis, yaitu memanipulasi persamaan sehingga dua persamaan yang berbeda, memiliki suku yang saling kita langsung ke contoh aja biar lebih jelas, misal sistem kita yaitu. 1 2 3Pertama, misal kita ingin menyederhanakan 1 dan 2, dan sebagai contoh ingin mengelemeninasi suku . Sebenarnya bebas ingin pilih suku yang mana dan dengan cara apapun. Kalau mau eliminasi suku terlebih dahulu, gak masalah, begitu juga untuk .Untuk kali ini coba kita kalikan pada persamaan 2, sehingga menjadi 2'Perhatikan bahwa suku yang memuat variabel pada persamaan kedua, sekarang mempunyai koefisien yang berlawanan dengan persamaan kita jumlahkan 1 dan 2', perhatikan suku memiliki koefisien yang berlawanan 4Perhatikan bahwa suku yang memuat variabel kini tidak misal kita eliminasikan suku pada 2 dan 3, atau bisa juga 1 dan 3, silahkan pilih sesuai teman-teman. Tapi kali ini. akan kita coba kalikan persamaan 2 dengan , sehingga persamaan yang kedua menjadi 2''Karena koefisiennya sudah saling berlawanan, dilanjutkan dengan menjumlahkan 2'' dan 3. 5Sekali lagi, perhatikan persamaannya tidak lagi memuat variabel .Dari proses di atas didapat dua persamaan yang hanya memuat dua variabel yaitu 4 dan 5. Di sini dapat dilihat, permasalahan berubah menjadi sistem persamaan linear dua variabel, karena suku telah dieliminasi, alias lanjut lagi, misal kita eliminasi suku pada 4 dan 5, untuk menyamakan suku kami ingatkan lagi, tukang iseng bebas caranya mau gimana. Kali ini kita pakai cara, kalikan 4 dengan dan 5 dengan .Sehingga didapat bentuk lain dari persamaannya 4'Untuk persamaan 5 5'Lalu kita jumlahkan 4' dan 5' untuk mengeliminasi Karena informasi yang kita miliki baru satu solusi yaitu , kita hanya bisa mencari terlebih dahulu, mengingat tersedianya sistem persamaan linear dua variabel pada dan pada 4 dan 5.Misal digunakan persamaan 4 bebas sebenarnya, pakai persamaan 5 juga oke, maka nilai -nya adalahTerakhir kita substitusikan dan pada 1 misal ini juga bebas gak harus persamaan pertama untuk mendapatkan , sehinggaSehingga solusi akhirnya adalahApabila teman-teman substitusikan nilai dari masing-masing variabel ini pada ketiga persamaan yang menjadi sistem kali ini, maka kesamaannya akan terpenuhi. Silahkan teman-teman coba sendiri!Tips PenyelesaianSekedar tips untuk mengerjakan permasalahan ini, carilah kombinasi persamaan misal 1 dan 3 yang membutuhkan manipulasi lebih mudah. Maksudnya bisa dieleminasi tanpa perlu manipulasi persamaan, maka dipilih saja kombinasi dua persamaan yang jika tidak memungkinkan, coba cari yang memerlukan operasi yang lebih sedikit, misal hanya perlu mengalikan pada salah satu persamaan saja. Biasanya untuk tips yang kedua bisa dilakukan kalau koefisiennya merupakan kelipatan dari koefisien merupakan salah satu upaya untuk menyelesaikan suatu masalah di dunia ini, atau yang dikenal dengan pemodelan masalah. Sebagai contoh, misal kita tengah berbisnis memiliki modal sebesar Rp. untuk dibelanjakan alat tulis berupa pulpen, pensil, dan penggaris. Lemari kecil untuk penyimpanan barang hanya mampu menyimpan total 250 dari grosir untuk satu unit pulpen seharga Rp. 1500, untuk pensil Rp. 1000, dan penggaris Rp. 2000. Diketahui juga bahwa kebutuhan pasar untuk penggaris setara dengan dua kali lipat pulpen ditambah dengan satu kali lipat Matematis PermasalahanKemudian permasalahan ini dapat diselesaikan dengan cara yang sama seperti di atas. Eliminasi terlebih dahulu variabel yang sekiranya mudah untuk dilakukan kemudian substitusikan balik untuk mendapatkan pasangan ada cara lain dari metode eliminasi yang disebut sebagai metode substitusi. Dengan cara ini kita tidak perlu repot-repot mencari pengali sehingga koefisiennya berlawanan. Tapi, bentuk persamaan hasil manipulasinya biasanya memerlukan kesabaran dalam contoh, misal kita ingin mensubstitusikan variabel pada persaman 1 ke persamaan 2. Maka kita ubah dulu bentuk persamaan pertama sehingga pada salah satu ruas tinggal variabel ini disubstitusikan pada persamaan keduaNamun secara keseluruhan sama saja kedua metode ini. Fokus kita di sini bukan pada penggunaan metodenya, melainkan pemcahan masalahnya. SistemPersamaan Linear Dua Variabel : Soal 5 (Masalah Pecahan) 6 . Sistem Persamaan Linear Dua Variabel : Soal 6 (Hubungan ruas garis) 7 . Sistem Persamaan Linear Dua Variabel : Soal 1 s/d 3 Sistem Persamaan Linear Dua dan Tiga Variabel : Soal Cerita 7 s/d 12 . Be the first to add a review. Please, login to leave a review Add to Wishlistmatematika123com_ Contoh soal matematika penyelesaian sistem persamaan linear 3 variabel matematika SMA kelas wajib dengan menggunakan metode determinan matriks atau cara sarrus (sorrus). Soal Diberikan sebuah sistem persamaan dalam 3 variabel sebagai berikut: 2x + y + 3z = 10 x + y + z = 6 4x + 3y + 2z = 19
NEWMANDALAM MATERI SISTEM PERSAMAAN LINEAR TIGA VARIABEL Agnia Ilmiananda Putri*1, Iyan Rosita Dewi Nur2 1,2 Universitas Singaperbangsa Karawang, Jl. HS. Ronggo Waluyo, Puseurjaya, Kec. Telukjambe Timur, Karawang, Jawa Barat, Indonesia *1810631050193@ 25 Februari, 2022; Disetujui: 17 Maret, 2022